# --- Do not remove these libs ---
from freqtrade.strategy import IStrategy
from typing import Dict, List
from functools import reduce
from pandas import DataFrame
# --------------------------------

import talib.abstract as ta
import freqtrade.vendor.qtpylib.indicators as qtpylib
from typing import Dict, List
from functools import reduce
from pandas import DataFrame, DatetimeIndex, merge
# --------------------------------

import talib.abstract as ta
import freqtrade.vendor.qtpylib.indicators as qtpylib
import numpy  # noqa


class ClucMay72018(IStrategy):
    """

    author@: Gert Wohlgemuth

    works on new objectify branch!

    """

    INTERFACE_VERSION: int = 3
    # Minimal ROI designed for the strategy.
    # This attribute will be overridden if the config file contains "minimal_roi"
    minimal_roi = {
        "0": 0.01
    }

    # Optimal stoploss designed for the strategy
    # This attribute will be overridden if the config file contains "stoploss"
    stoploss = -0.05

    # Optimal timeframe for the strategy
    timeframe = '5m'

    def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
        dataframe['rsi'] = ta.RSI(dataframe, timeperiod=5)
        rsiframe = DataFrame(dataframe['rsi']).rename(columns={'rsi': 'close'})
        dataframe['emarsi'] = ta.EMA(rsiframe, timeperiod=5)
        macd = ta.MACD(dataframe)
        dataframe['macd'] = macd['macd']
        dataframe['adx'] = ta.ADX(dataframe)
        bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
        dataframe['bb_lowerband'] = bollinger['lower']
        dataframe['bb_middleband'] = bollinger['mid']
        dataframe['bb_upperband'] = bollinger['upper']
        dataframe['ema100'] = ta.EMA(dataframe, timeperiod=50)
        return dataframe

    def populate_entry_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
        """
        Based on TA indicators, populates the buy signal for the given dataframe
        :param dataframe: DataFrame
        :return: DataFrame with buy column
        """
        dataframe.loc[
            (
                    (dataframe['close'] < dataframe['ema100']) &
                    (dataframe['close'] < 0.985 * dataframe['bb_lowerband']) &
                    (dataframe['volume'] < (dataframe['volume'].rolling(window=30).mean().shift(1) * 20))
            ),
            'enter_long'] = 1

        return dataframe

    def populate_exit_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
        """
        Based on TA indicators, populates the sell signal for the given dataframe
        :param dataframe: DataFrame
        :return: DataFrame with buy column
        """
        dataframe.loc[
            (
                (dataframe['close'] > dataframe['bb_middleband'])
            ),
            'exit_long'] = 1
        return dataframe